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Abstract—A key problem in the control of packet-switched
data networks is to schedule the data so that the queue sizes
remain bounded over time. Scheduling algorithms have been
developed in a number of different models that ensure network
stability as long as no queue is inherently overloaded. However,
this literature typically assumes that each server runs at a fixed
maximum speed. Although this is optimal for clearing queue
backlogs as fast as possible, it may be suboptimal in terms of
energy consumption. Indeed, a lightly loaded server could operate
at a lower rate, at least temporarily, to save energy.

Within an energy-aware framework, a natural question arises:
“What is the minimum energy that is required to keep the
network stable?” In this paper, we demonstrate the following
results towards answering that question.

Starting with the simplest case of a single server in isolation,
we consider three types of rate adaptation policies: a heuristic
policy, which sets server speed depending on queue size only, and
two more complex ones that exhibit a tradeoff between queue
size and energy usage. We also present a lower bound on the
best such tradeoff that can possibly be achieved.

Next, we study a general network environment and investigate
two scenarios. In a temporary sessions scenario, where connection
paths can rapidly change over time, we propose a combination of
the above rate adaptation policies with the standard Farthest-to-
Go scheduling algorithm. This approach provides stability in the
network setting, while using an amount of energy that is within a
bounded factor of the optimum. In a permanent sessions scenario,
where connection paths are fixed, we examine an analogue of the
well-known Weighted Fair Queueing scheduling policy and show
how delay bounds are affected under rate adaptation.

I. INTRODUCTION

In this paper we revisit a number of classical network
scheduling problems and examine how they are affected
when we introduce energy awareness. Most such scheduling
problems have been formulated under the assumption that the
processing rate of a server is fixed. However, modern servers
often allow for dynamic adjustment of their processing rate,
because operating at a lower rate typically requires less power.
This has inspired a growing body of research on how to best
take advantage of this so-called rate adaptation capability in
the interest of maximizing energy savings.

Herein, our main focus is whether it is possible to maintain
stability, or equivalently bounded queues, in a network of
servers in an energy-aware manner. In particular, we inves-
tigate the tradeoff between energy consumption and perfor-
mance measures such as delay and queue size.

We remark that there exists an extensive literature proposing
various scheduling algorithms that keep the network stable, as

long as the servers are always operating at maximum rate.
In order to study the problem we posed earlier, though, our
task is to determine how to adapt these algorithms so as
to minimize energy while preserving stability. The related
objective of guaranteeing bounded end-to-end packet delay is
also considered.

A. Modeling
First of all, let us describe our modeling of the problem. We

consider a network of multiple servers, which process and then
forward incoming data traffic. Every server’s processing rate
may be adjusted independently, taking any value in the interval
[Rmin, Rmax]1, where Rmin and Rmax are given parameters
such that 0 < Rmin < Rmax. Furthermore, the power
consumed by the server e while operating at rate re is given
by a so-called energy function f(re). We adopt the common
assumption that f(s) = sα for some parameter α > 1, which
is based on properties of CMOS circuits [9], [16].

For every server, a rate-adaptive scheduling algorithm
makes two decisions at any given time, namely setting the
processing rate and determining which data in the server queue
to forward. We concentrate on work-conserving algorithms
only; in other words, the algorithm cannot order a server not
to forward any traffic (for whatever reason) at a time when the
latter’s queue is non-empty. Moreover, with regard to network
traffic we consider two standard models, defined below.

1) Temporary Sessions Model: This model is also known
as the Adversarial Queuing Model (AQM). It aims to capture
situations in which the set of sessions (or connections) carried
by the network is highly volatile. The model stipulates that
packets are injected into the network by some adversarial
process A, henceforth referred to simply as the adversary.
Additionally, A specifies the path along which each packet
must be routed at the time of its injection, and the hop count
of every such path is bounded by a parameter d. Let Ae(t, t′)
be the total size of packets injected into the network during
the time interval [t, t′) that include server e on their paths.
In order for each server not to be inherently overloaded, the
packet injection by A is restricted to be (σ, 1− ε)-admissible,
which means that for all e and all intervals [t, t′),

Ae(t, t
′) ≤ σ + (1− ε)Rmax(t′ − t) ,

1In practice, only a discrete set of rates would likely be available, due to
hardware constraints. Nevertheless, we extend it to a continuous range for
clarity of exposition. This entails no loss of generality for our results.
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where σ ≥ 0 is the burst size and ε > 0 reflects the load factor.
We then say that A is a bounded adversary of rate (σ, 1− ε).

2) Permanent Sessions Model: This model is sometimes
referred to as the connection-oriented model, and it reflects
a setting where all data is transported along pre-defined
connections. Each connection i is specified by a path Pi, a
burst size σi, and an injection rate ρi. Let Hi(t, t

′) be the
total injection into connection i during the time interval [t, t′).
Again, to ensure servers are not inherently overloaded, the
injection is restricted to be admissible in the following sense.

Hi(t, t
′) ≤ σi + ρi(t

′ − t) ∀i,∀[t, t′)∑
i:e∈Pi

ρi ≤ (1− ε)Rmax ∀e (1)

Remark. It is easy to see that any traffic admissible to the
permanent sessions model is also admissible to the temporary
sessions model. However, the converse statement is not true.
Indeed, consider two paths P1 and P2 that share a server e. Let
us partition time into intervals of arbitrarily large lengths. The
temporary sessions model allows injections that alternate be-
tween only injecting along P1 during odd-numbered intervals
and only injecting along P2 during even-numbered intervals,
at rate 0.9Rmax in both cases. This cannot happen in the
permanent sessions model, because the connection rates must
be set at ρ1 = ρ2 = 0.9Rmax. As a result,

∑
i:e∈Pi ρi > Rmax,

which would violate (1). (Note that since the interval lengths
are arbitrarily large, admissibility in the permanent sessions
model cannot be achieved by setting a large burst size for
each connection.) Therefore, strictly more traffic injections are
admissible in the temporary sessions model.

We say that the network is stable if the aggregate queue
size remains bounded over time. Our goal in this paper is to
maintain stability while also tailoring server rates to traffic
loads in such a way that energy usage is minimized. For
example, if the long-term traffic through server e satisfies
Ae(t, t

′) � Rmax(t′ − t) for t′ � t, then the latter can
operate at a rate much smaller than Rmax without jeopardizing
stability. However, there is no way to know exactly how much
traffic will arrive at e in the future, and thus it is not clear
a priori how to set its rate for optimal energy efficiency.
This constitutes a scheduling problem which, to the best of
our knowledge, has not been addressed in conjunction with
network stability before.

B. Previous Work

1) Network stability: If every server runs at rate Rmax

constantly, then there exist well-known scheduling algorithms
ensuring a time-independent upper bound on the size of
all queues, in the temporary sessions model, for any given
bounded adversary and any network topology. Such algorithms
are called universally stable. More specifically, it was shown
in [1] that several scheduling algorithms – including Farthest-
to-Go (FTG) and Nearest-to-Source (NTS), whose definitions
we provide later – are universally stable, and also guarantee
bounded end-to-end packet delay. By contrast, some very

natural algorithms such as First-in-First-out (FIFO) and Last-
in-First-out (LIFO) are not universally stable.

In the permanent sessions model, the most widely studied
scheduling algorithm is Generalized Processor Sharing (GPS),
in particular its packetized form that is sometimes called
Weighted Fair Queueing (WFQ) [8]. Under GPS and WFQ,
each server operates by splitting service among all backlogged
connections according to some predetermined weights. We
shall focus on the version known as Rate Proportional Pro-
cessor Sharing (RPPS), in which the weight for connection
i is equal to ρi at each server. Parekh and Gallager [13],
[14] proved that if each server always runs at rate Rmax then
the packetized version of RPPS is stable and they derived
an end-to-end delay bound for each connection. (See (2) in
Section I-C3.) We note that RPPS highlights the difference
between the two traffic models in question, since it has
been established that RPPS is not necessarily stable in the
temporary sessions model [3].

2) Energy Efficiency: The study of energy minimization via
rate adaptation was initiated by Yao et al. [16], where they con-
sidered energy functions of the form f(x) = xα. Subsequently,
a large number of papers focused on the problem of conserving
energy on a single server. Most of this prior work falls in two
categories. In the first one (e.g. [5], [7]), every job has an
associated deadline, and the goal is to minimize energy while
meeting all the deadlines. In the second category (e.g. [4],
[15]), jobs do not have individual deadlines and the goal is
to minimize the sum of the energy used plus the aggregate
response time of the jobs. Note that even in the single-server
case neither of these objectives directly addresses our goal of
minimizing energy consumption while maintaining stability.

Another body of work focuses on the powerdown model,
in which the servers cannot alter their processing rates but
can toggle between the on and off states at a switching
cost. For example, [10] discusses the energy consequences of
putting router and switch components to sleep. The survey
[11] presents known results for both the powerdown and the
rate adaptation models.

As already mentioned, much less attention was paid to
scheduling for energy minimization in networks of servers.
Nedevschi et al. [12] considered both rate adaptation and
powerdown in the context of multiple servers and concluded
that energy could be saved if we batch together packets
with the same source and destination. Alternative techniques
for batching packets in the powerdown model and thereby
minimizing the number of transmissions between states were
also explored in [2]. To the best of our knowledge, no prior
work has attempted to tackle the specific problem that we
deal with here, namely that of minimizing energy usage while
maintaining network stability.

C. Results

Our paper is divided into three main sections.
1) Single-server results: In Section II we focus on schedul-

ing a single server in isolation. This allows us to study basic
issues such as the tradeoff between queue sizes and energy
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in this simplest setting. For example, suppose optB(t) is the
optimal energy necessary to keep the queue size bounded
by B up to time t. We show that no online algorithm can
simultaneously keep the energy consumption within a certain
factor of optB and the queue size within a corresponding
constant factor of B. This establishes a concrete limit on
what one can hope for in terms of maintaining stability while
minimizing energy.

We then propose three rate-adaptive policies to set server
rates: Batch, SlowStart and queue-based. Roughly speaking,
the Batch policy accumulates data of size 2B before serving
it at a rate equal to the average arrival rate of this data. This
policy ensures a maximum queue size of O

(
B log2

Rmax

Rmin

)
and

energy usage of O(6α · optB(t)). The SlowStart policy starts
with rate Rmin at the beginning of each interval where the
queue is non-empty, and after some time it ramps up the
processing rate linearly, in a deterministic fashion. SlowStart
ensures a maximum queue size of O

(
σ+B

R2
max

R2
min

)
and energy

consumption of O(2α · optB(t)). The queue-based policy (or
rather family of policies) sets the server rate solely as a
function of the current queue size. Although we cannot bound
the energy usage of this approach for all admissible traffic,
when the arrival rate is constant it can keep the queue size
bounded by O(B) while consuming O(optB(t)) energy.

2) Results for Temporary Sessions Model: In Section IV
we examine the multiple-server scenario in the temporary
sessions model. Our starting point is the universally stable
[1] algorithm Farthest-to-Go (FTG), which gives priority to
data farthest from its destination (in terms of server hops). We
generalize all three rate-adaptive policies mentioned above to
multiple servers. When combined with FTG, both Batch and
SlowStart yield the desired properties of bounded queue size
and bounded energy consumption. Additionally, we derive a
bound on end-to-end delay in the case of SlowStart, although
we are so far unable to establish a similar claim for Batch.

Note that for “traditional” work-conserving scheduling algo-
rithms, bounded delay is equivalent to bounded queue (hence
stability). However, this is no longer true when rate adaptation
is an option, as demonstrated by the example in Section III.

In the interest of space, our presentation focuses on combin-
ing SlowStart with FTG. All results in this section carry over
if we replace FTG with another universally stable algorithm
Nearest-to-Source (NTS), which gives priority to data closest
to its source.

3) Results for Permanent Sessions Model: For the Perma-
nent Sessions Model, our starting point is the work of Parekh
and Gallager [13], [14], who showed that if every server
always runs at Rmax, Weighted Fair Queueing guarantees the
following end-to-end delay bound for each connection i,

σi + (Ki − 1)Li
ρi

+Ki
maxi Li
Rmax

(2)

where σi, ρi, Ki and Li are respectively the burst size,
connection rate, hop count and maximum packet size for
connection i. Our major result in this section is that for any
rate-adaptive policy that uses rates between Rmin and Rmax

and always uses rate Rmax when the queue exceeds a threshold
U , if we schedule according to Weighted Fair Queueing then
the end-to-end delay is bounded by

σi + (Ki − 1)Li
ρi

+Ki

(
maxi Li
Rmin

+
Rmax

Rmin

U

ρi

)
.

II. THE SINGLE-SERVER CASE

We begin our analysis by focusing on a single server in
isolation. This will allow us to determine some of the basic
tradeoffs between queue size and energy usage. First of all,
we define a simple lower bound on energy consumption to
keep the queue size bounded by B, which shall be used as a
benchmark henceforth. We then present a bound on the optimal
tradeoff between queue size and energy efficiency that can
be achieved by any rate adaptation policy. Subsequently, in
Sections II-C, II-D, and II-E, we propose three approaches to
set the server rate adaptively and show upper bounds on their
energy usage and queue size.

A. Lower bound on energy usage

Recall that optB(t) is the minimum amount of energy
required by time t if we wish to keep the queue bounded
by B at all times. Let optB(t, t′) be defined similarly on the
interval [t, t′). We derive a simple bound on optB(t, t′).

Lemma 1. For a single server e,

optB(t, t′) ≥ f
(

max

{
Rmin,

Ae(t, t
′)−B

t′ − t

})
· (t′ − t) .

Proof: Since data of size Ae(t, t
′) arrives during the

time interval [t, t′) and the queue size is to be less than B
at time t′, then the amount of data that must be processed
during [t, t′) is at least max{0, Ae(t, t′) − B}. However, we
are assuming that f(·) is a convex function and the minimum
processing rate is Rmin, thus in order to serve that amount
of data with minimal energy usage the server must operate
at speed max

{
Rmin, (Ae(t, t

′)−B)/(t′− t)
}

throughout the
interval [t, t′). The bound follows.

We shall assume that B ≥ σ, since one cannot hope to
maintain the queue size smaller than the burst size. Even then,
the energy bound of Lemma 1 may not be achievable, for
instance if most of the data injected during [t, t′) is injected
towards the end of the interval.

B. Bound on tradeoff between queue size and energy

Intuitively, guaranteeing a better bound on queue size should
incur higher energy usage. We establish that such a tradeoff
is inherently unavoidable.

Lemma 2. Let x1 = B
Rmin

, x2, x3, . . . be a sequence that
satisfies

xjf

(
B

2xj

)
≥ ν

∑
`<j

x`f

(
B

x`

)
, (3)

for some given ν. Further, suppose that a rate adaptation
policy RA uses energy at most ν · optB(t) by time t, for all
times t. Then, the maximum queue size under RA is at least
(J(ν) + 1)B/2, where J(ν) = argmax

{
j : xj ≥ B

Rmax

}
.
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Proof: We define a sequence t0 = 0, t1, . . . , tJ(ν), with
tj = tj−1 + xj for 1 ≤ j ≤ J(ν). Assume that data of
size B arrives at each time t0, t1, . . . , tJ(ν). An optimal rate
adaptation policy would serve data of size B during each
interval [tj−1, tj) for 1 ≤ j ≤ J(ν), so that the queue size
remains at most B.

Nevertheless, the policy RA cannot follow this behavior,
for the simple reason that it cannot predict the future. More
precisely, when data of size B arrives at time tj , j ≥ 1, RA
can deduce what the optimal schedule should have been for
serving all data injected at t0, . . . , tj−1. Then, by Lemma 1,

optB(tj) ≥
∑
`≤j

(t` − t`−1)f

(
B

t` − t`−1

)
=
∑
`≤j

x`f

(
B

x`

)
.

Since RA does not know whether (or when) additional data
will be injected in the future, it can only afford to use at most
ν · optB(tj) energy in the interval [0, tj+1), hence a fortiori
in the interval [tj , tj+1). From (3),

ν · optB(tj) ≤ (tj+1 − tj)f
(

B/2

tj+1 − tj

)
,

which implies that the amount of data RA can serve in
[tj , tj+1) is no more than B/2. Finally, during the interval
[t0, t1), RA sets the speed to Rmin by default and serves data
of size B. Hence, at time tJ(ν) the queue size is at least
(J(ν) + 1)B −B − (J(ν)− 1)B/2 = (J(ν) + 1)B/2.

Corollary 3. Suppose that the energy function has the form
f(s) = sα and that a rate adaptation policy RA uses energy at
most ν ·optB(t) by time t, for all times t. Then, the maximum
queue size under RA is at least Ω

(
B logν(Rmax/Rmin)

)
.

Sketch of proof: For j = 1, 2, . . . , let

xj =
B

Rmin
(2αν + 1)

j−1
1−α ,

and J(ν) =

⌊
(α− 1) log2αν+1

Rmax

Rmin
+ 1

⌋
.

Algebraic manipulation shows that the above definition of xi
satisfies (3).

C. The Batch policy

We now show how to ensure both stability and near-optimal
energy consumption using a rate adaptation policy that we call
Batch. The basic idea is to wait until just enough data has
arrived at the server so that our lower bound on optB(t) allows
for a transmission rate that can serve all this data. Moreover,
in the interest of simplifying the analysis, let us first assume
that the server may operate even at rates higher than Rmax.

To begin with, define a busy interval as a time interval dur-
ing which the queue is non-empty. Suppose that a busy interval
I starts at time τ0, and let τj = min{t ∈ I | Ae(τ0, t) ≥ 2Bj}.
Therefore, in each interval [τj , τj+1) data of size 2B arrives
at the queue, and the policy makes sure that an equivalent
amount of data is served by time 2τj+1− τj . This is achieved
by setting re(t) = max

{
Rmin,

∑
2B/(τj+1−τj)

}
, where the

summation is over all indices j such that t ∈ [τj+1, 2τj+1−τj).

Denote these indices (if any such exist) by j1 < j2 < · · · <
jm, and the interval [τjm , τjm+1) by I(t). We have:

Lemma 4. If re(t) > Rmin, then re(t) ≤ 6B/|I(t)|.

Proof: For a given t, note that re(t) > Rmin guarantees
the existence of indices j1, j2, . . . , jm as defined above, for
some m ≥ 1, and thus also the existence of I(t). Since
j` ≥ j`−1 + 1, observe that τj` ≥ τj`−1+1. Furthermore,
t ≤ 2τj`+1 − τj` implies t− τj`+1 ≤ τj`+1 − τj` . Combining
the above yields t − τj`+1 ≤ τj`+1 − τj`−1+1, and hence
2(t− τj`+1) ≤ t− τj`−1+1. Consequently, re(t) equals

m∑
`=1

2B

τj`+1 − τj`
=

m−1∑
`=1

2B

τj`+1 − τj`
+

2B

τjm+1 − τjm

≤
m−1∑
`=1

2B

t− τj`+1
+

2B

τjm+1 − τjm

≤
m−1∑
`=1

2`−m+12B

t− τjm−1+1
+

2B

τjm+1 − τjm

≤ 4B

t− τjm−1+1
+

2B

τjm+1 − τjm

≤ 4B

τjm+1 − τjm
+

2B

τjm+1 − τjm
=

6B

τjm+1 − τjm
=

6B

|I(t)|
,

where the last inequality is due to the fact that t− τjm−1+1 ≥
t− τjm ≥ τjm+1 − τjm .

Lemma 5. The total energy used by Batch up until time t is
at most sups

f(6s)
f(s) · optB(t). For f(s) = sα, this is at most

6α · optB(t).

Proof: Clearly, we need only consider the energy con-
sumption of Batch during busy intervals – or, even more
restrictively, during intervals where re(t) > Rmin. That
holds because Rmin is the most energy-efficient among the
allowable rates, i.e. it minimizes the ratio f(s)/s, owing to
our assumption about the energy function in Section I-A.

Within a busy period, consider some interval [τj , τj+1) and
let I ′(τj) = {t | I(t) = [τj , τj+1)}. Obviously |I ′(τj)| ≤
τj+1 − τj , by the definition of I(t). Due to Lemmas 4 and 1,
the energy consumption during I ′(τj) is at most

f

(
6B

τj+1 − τj

)
· I ′(τj) ≤ f

(
6B

τj+1 − τj

)
· (τj+1 − τj)

≤ sup
s

f(6s)

f(s)
· optB(τj , τj+1) .

Repeating this for every interval of the form [τj , τj+1), across
all busy periods, accounts for the energy consumption of all
intervals where re(t) > Rmin, without overlaps. The lemma
is thus established.

Subsequently, we derive a bound on the queue size.

Lemma 6. The rate adaptation policy Batch guarantees that
the queue size is never larger than 2B

(
log2(Rmax/Rmin)+4

)
.
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Sketch of proof: At time t, the amount of data still in
the queue is given by

m∑
`=1

2B · 2τj`+1 − τj` − t
τj`+1 − τj`

≤ 2B ·m .

We need to bound m. On one hand, it is fairly straightfor-
ward to deduce that t− τj1+1 ≤ τj1+1− τj1 ≤ 4B/Rmin, oth-
erwise the busy interval would end before τj1+1. On the other
hand, t − τjm−1+1 ≥ τjm+1 − τjm ≥ B/Rmax, because we
assumed that B ≥ σ. Together with 2(t−τj`+1) ≤ t−τj`−1+1,
the above yield m ≤ log2(Rmax/Rmin) + 4, as required.

Finally, we explain how Batch works on a server whose
maximum speed is strictly Rmax, which is the case of practical
interest. More specifically, Batch tries to simulate its own
behavior on an unrestricted server, which we described earlier.
This involves two modes of operation, normal and catch-up.
While in normal mode, the policy sets the same rate as it
would set on the simulated unrestricted server. As soon as
the latter rate exceeds Rmax, Batch enters catch-up mode, in
which the rate is held at Rmax constantly, and only reverts to
normal mode when the queue sizes of the two servers, actual
and simulated, coincide.

Naturally, in normal mode the bounds of Lemmas 5 and 6
remain valid. Suppose that just before switching to catch-up
mode, the queue size is Q ≤ 2B

(
log2(Rmax/Rmin)+4

)
. After

remaining in that mode for a time interval of length λ, the
queue size becomes ≤ Q+σ+(1−ε)Rmaxλ−Rmaxλ ≤ Q+σ,
which also implies that Batch will not stay in catch-up mode
for ever. Furthermore, during the entire interval spent in catch-
up mode, the actual server processed (at constant rate) exactly
the same amount of data as the simulated one (at variable
rate). Since f(·) is convex, the former server consumed no
more energy than the latter.

Theorem 7. The rate adaptation policy Batch ensures that
maximum queue size is bounded by Ω

(
B log(Rmax/Rmin)

)
and consumes at most constant times the optimal energy.

D. The SlowStart policy

In addition to Batch, let us introduce another policy named
SlowStart. It stipulates that re(t) = min{Rmax, g(t− θe(t))},
where g(·) is a simple piecewise linear function

g(x) =

{
Rmin if 0 ≤ x ≤ 2B

Rmin
R2

min

2B · x if x > 2B
Rmin

,

and θe(t) denotes the beginning of the busy interval of e that
contains t, if one such exists, else is equal to t.

Within a busy interval, note that SlowStart initially sets the
speed at Rmin and later increases it linearly (hence the name),
in a deterministic fashion. Interestingly, traffic arrivals have
no direct effect on the speed, other than by determining when
the busy interval ends. Below we summarize the properties of
SlowStart in the single-server setting.

Theorem 8. The rate adaptation policy SlowStart ensures that
maximum queue size is bounded by Ω

(
BR2

max/R
2
min

)
and

consumes at most sups
f(2s)
f(s) · optB(t) energy up until time

t. For f(s) = sα, this is at most 2α · optB(t).

Sketch of proof: Essentially a special case of Theo-
rems 15 and 16 of Section IV, for n = d = 1.

Remark. Although the above queue bound is worse than that
of Batch, the SlowStart policy is nevertheless valuable, as we
employ a variant of it in Section IV.

E. Queue-based policies

A queue-based policy sets the server rate according to
re(t) = r(qe(t)), where qe(t) is the queue size at time t, and
r(·) is a non-negative and non-decreasing continuous function.
In particular, if the queue size exceeds some threshold U then
r(qe(t)) is set to the maximum rate Rmax. Otherwise, r(qe(t))
is at least the minimum rate Rmin. If traffic arrives at a constant
rate, it is easy to provide good bounds for both queue and
energy under such a policy.

Theorem 9. Suppose that traffic arrives at the server at
a constant rate ρ ≤ (1 − ε)Rmax. Under a queue-based
rate adaptation policy for which U = B, the queue size
never exceeds B and the energy consumption up to time t
is O(optB(t)), for large enough t.

Proof: Starting from an empty queue at time 0, both
queue size and server speed begin to increase, until the speed
reaches ρ. At that time, the queue size is at most U , because
of the monotonicity of r(·) and the fact that ρ < Rmax. Both
the server speed and queue size remain constant thereafter.
Additionally, the energy usage up to time t is at most t · f(ρ),
whereas optB(t) ≥ t · f

(
(ρt−B)/t

)
.

For arbitrary admissible traffic, it is easy to see that the
above queue bound increases to B + σ, however we do not
know whether any energy bound can be guaranteed.

III. BOUNDED QUEUE VS. BOUNDED DELAY

We now turn to a network of multiple servers. Before diving
into more complex results, let us state a simple but perhaps
somewhat unexpected observation on the relationship between
bounded queues and bounded delays. A folklore result states
the equivalence between bounded queue and bounded delay
when server rates are kept at Rmax.

Theorem 10 (Folklore). If a work-conserving algorithm al-
ways works at Rmax, then bounded delay is equivalent to
bounded queue under any bounded adversary of rate (σ, 1−ε).

However, the above theorem no longer holds for some
rate-adaptive algorithms. In particular, a stable rate-adaptive
algorithm may not guarantee a bounded delay for every packet.

Lemma 11. Neither FTG nor NTS guarantees a finite packet
delay even in the permanent sessions model.

Sketch of proof: Consider FTG on the following config-
uration. The network consists of three servers e1, e2, e3 on
a line and carries two connections: connection 1 goes to e3
through e1 and e2, with rate (1− 2ε)Rmax, and connection 2
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goes to e2 through e1, with rate εRmax. Note that packets of
connection 1 in the queue of e1 have priority over those of
connection 2, under FTG.

Suppose that at some point the queue of e1 contains packets
of both connections, and has size q◦ such that r(q◦) ≤
(1 − 2ε)Rmax. Then, if connection-1 packets are henceforth
injected at rate r(q◦) and no more connection-2 packets are in-
jected, existing connection-2 packets may be held indefinitely
in e1, even though its queue size remains bounded by q◦.

IV. TEMPORARY SESSIONS

As in Section II-E, consider a queue-based rate adaptation
policy with threshold U . If r(qe(t)) < Rmax at time t, we say
that all packets in the queue of server e are withheld in e at
t. Naturally, a packet p may be withheld in e for two or more
noncontiguous time intervals.

Lemma 12. Denote by we(t) the total size of packets in the
queue of e at time t that are (or will be) withheld in e at any
finite time ≥ t. We have we(t) ≤ U .

Proof: To the contrary, suppose that we(t) > U and let
t∗ ≥ t be the earliest time at which any of these packets
is withheld in e. At that time, qe(t∗) > we(t) > U , since
none of said packets could have been processed until then.
Consequently, r(qe(t∗)) = Rmax and hence no packet should
be withheld at t∗, which is a contradiction.

Theorem 13. Under any queue-based rate adaptation policy
with finite threshold U , FTG and NTS are universally stable.

Proof: Consider FTG; the proof for NTS is symmetric.
We argue that having adversary A inject traffic in the rate-
adaptive network G can be quasi-simulated by another adver-
sary A′ injecting traffic in a non-rate-adaptive system G′, as
described below. More precisely, we claim that it is within the
capabilities of A′ to ensure that at every time t the difference
between the number of packets in each network is at most nU ,
where n is the number of servers of G.

The network G′ is derived from G via the following
construction: for each server e of G create d new servers
π1(e), π2(e), . . . , πd(e), and the resulting network is G′. All
servers of G′ follow the FTG algorithm as well. Furthermore,
if A is a bounded adversary of rate (σ, 1 − ε), then A′ is of
rate (σ + nU, 1− ε) and also knows the behavior of A.

We now explain how the quasi-simulation takes place.
Consider a packet p injected into G at time t, to be routed
over consecutive servers e1, e2, . . . , ek, with 1 ≤ k ≤ d. If p
is not withheld anywhere until it is absorbed, then A′ injects
a copy of p into G′ at t, with the same routing. Observe
that A′ can know what happens to p in the future, since
the rate-adaptive network G is deterministic. On the other
hand, suppose that p is withheld in ` ≤ k distinct servers
ei1 , ei2 , . . . , ei` , such that 1 ≤ i1 < i2 < · · · < i` ≤ k. For
1 ≤ j ≤ `, denote by tij the first time that p is withheld in eij
and by t̄ij the time that it is processed. In that case, A′ injects
a total of `+ 1 copies of p – not all at the same time – with
mutually disjoint routing paths. The first copy is injected at

t, with routing e1, . . . , ei1−1, π1(ei1), . . . , πd−i1+1(ei1). Sub-
sequently, for 2 ≤ j ≤ `, the jth copy is injected at time
t̄ij−1 , with routing eij−1 , . . . , eij−1, π1(eij ), . . . , πd−ij+1(eij ).
Finally, the last copy is injected at time t̄i` , with routing
ei` , . . . , ek.

Recall that in the interval [t0, t), A is allowed to inject
packets of total size up to σ+(1−ε)Rmax(t−t0) whose routing
includes server e of G, whereas the analogous bound for A′
is greater by nU . By Lemma 12, this suffices to allow A′ to
inject any subsequent copies of packets whose respective first
copies were injected before time t0. (Note that if only packets
originally injected at or after t0 had to be considered, a bound
of σ+ (1− ε)Rmax(t− t0) would be enough.) Additionally, it
is straightforward to realize that at any time step t, the queue
size of server e in G is exactly equal to we(t) plus the size
of the corresponding queue in G′, which is bounded thanks to
the universal stability of FTG [1].

Remark. The quasi-simulation technique employed in the
above proof cannot be used to obtain bounded delay guar-
antees for individual packets, thus it does not contradict
Lemma 11.

A. Combining SlowStart and Batch with FTG

In order to combine the rate adaptation policy SlowStart
with the scheduling algorithm FTG, we transform it so that
it classifies packets in a similar way as FTG does, i.e. by the
remaining distance to their destination. First, we provide a few
definitions. Denote by Xe,i(t) the total size of packets in the
queue of server e at time t that are ≥ i hops away from their
respective destinations. Moreover, define ki = 0 for i > d and
ki = n

(
ki+1 + σ + 2R2

max(ki+1 +B)/R2
min

)
for 1 ≤ i ≤ d.

For t ≥ 0, the (revised) policy SlowStart sets the rate of e
to re(t) = min

{
Rmax,max1≤i≤d gi

(
t− θe,i(t)

)}
, where

gi(x) =

{
Rmin if 0 ≤ x ≤ 2(ki+1+B)

Rmin
R2

min

2(ki+1+B) · x if x > 2(ki+1+B)
Rmin

and θe,i(t) = sup{t′ ≤ t | Xe,i(t
′) = 0}. Again, observe that

each gi(·) is a simple, piecewise linear function. Furthermore,
the following property is readily verified:

Proposition 14. For every 1 ≤ i ≤ d and every x > 0,

gi(x) = max

{
Rmin, 2

∫ x
0
gi(u) du− ki+1 −B

x

}
. (4)

Theorem 15. Combined with the rate adaptation policy
SlowStart, FTG is universally stable and guarantees bounded
packet delay.

Proof: Via backwards induction on i, we argue that∑
eXe,i(t) ≤ ki and

|Xe,i(t)| ≤ ki+1 − εRmax

(
t− θe,i(t)

)
+ σ +

+ 2R2
max(ki+1 +B)/R2

min (5)

for all t ≥ 0, all i ≥ 1, and every server e. These hold trivially
for i > d, since the routing path of any packet contains ≤ d
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hops and thus Xe,i(t) = 0. Now, suppose that both inequalities
are also valid for i = η+1, where 1 ≤ η ≤ d. Then, for i = η,
the packets in e at time t with ≥ η hops remaining may be
partitioned in two categories: (i) packets that were injected
at time θe,η(t) or later, whose total size is at most σ + (1 −
ε)Rmax

(
t − θe,η(t)

)
, and (ii) packets that already existed in

the system before θe,η(t), in queues other than that of e and
still having ≥ η+1 hops to go at that time, whose total size is
at most kη+1. Further, note that from θe,η(t) until t the queue
processes at least Rmax

(
t−θe,η(t)−2Rmax(kη+1+B)/R2

min

)
packets. Hence, Xe,η(t) ≤ kη+1 − εRmax

(
t− θe,η(t)

)
+ σ +

2R2
max(kη+1 + B)/R2

min and
∑
eXe,η(t) ≤ n

(
kη+1 + σ +

2R2
max(kη+1 +B)/R2

min

)
= kη , completing the induction.

Moreover, (5) implies that t − θe,i(t) ≤ ki/(nεRmax).
Therefore, a packet that arrives at the queue of e and still
has ≥ i hops to go will be processed within ki/(nεRmax)
time. This means that every packet reaches its destination at
most

∑d
i=1 ki/(nεRmax) time after its injection. Finally, we

deduce that the total number of packets in the system at any
time is ≤ k1.

Theorem 16. Combined with the rate adaptation policy
SlowStart, FTG consumes at most d · sups

f(2s)
f(s) · optB(t)

energy up until time t, where d is the maximum hop count of
routing paths. For f(s) = sα, this is at most d · 2α · optB(t).

Remark. In a multiple-server context, the meaning of optB(t)
is slightly different than the one in Section II-A. Specifically,
the desired bound B pertains to the sum of (i) the queue size
of a server e at any given moment, and (ii) the total size of
all packets that are elsewhere in the network at that time and
must go through e in the future to arrive at their respective
destinations. In all other respects, the statement and validity
of Lemma 1 remain unaffected.

Proof of Theorem 16: Our analysis is done on a per-
server basis. As usual, we need only account for energy usage
in time intervals where re(t) > Rmin. First, define ζe,i(t) =
inf{t′ ≥ t | Xe,i(t

′) = 0} and Ii(t) =
[
θe,i(t), ζe,i(t)

)
.

Obviously t ∈ Ii(t), and if t1 6= t2 then Ii(t1) and Ii(t2)
either coincide or are mutually disjoint.

Furthermore, for 1 ≤ i ≤ d let Ti = {t ∈ [0, t) | re(t) =
gi(t − θe,i(t)) > Rmin} and Ii = {Ii(t) ∩ [0, t) | t ∈ Ti}.
Now, fix i and consider each interval I ∈ Ii. If ta = inf I and
tb = sup I , then we have∫

I∩Ti
f(re(u)) du =

∫
I∩Ti

f(gi(u− ta)) du

≤ f(gi(tb − ta)) · |I ∩ Ti|

≤ f

(
2

∫ tb
ta
gi(u) du− ki+1 −B

tb − ta

)
· |I|

≤ f
(

2
Ae(ta, tb)−B

tb − ta

)
· (tb − ta)

≤ sup
s

f(2s)

f(s)
· optB(ta, tb) ,

where the first inequality above holds because gi(t − ta) is
non-decreasing in I , the second because of (4) plus the fact
that |I ∩Ti| ≤ |I|, while the third is due to arguments similar
to those that established (5). Since the intervals contained
in each Ii are mutually disjoint, we straightforwardly deduce
that the total energy consumed by e up until time t is at most

d∑
i=1

(∫
Ti

f(re(u)) du

)
=

d∑
i=1

(∑
I∈Ii

(∫
I∩Ti

f(re(u)) du

))

≤
d∑
i=1

(
sup
s

f(2s)

f(s)
· optB(t)

)
,

which directly implies the theorem.
Last but not least, it is rather straightforward to modify

Batch along the same lines as we did with SlowStart, for the
purpose of combining it with FTG and obtaining a stable rate-
adaptive algorithm with near-optimal energy consumption. In
fact, the queue bound thus derived is better than that of the
SlowStart-FTG combination, consistently with the advantage
of Batch over SlowStart in the single-server case. On the
other hand, we could not derive a guarantee on end-to-end
packet delay for the Batch-FTG algorithm, for reasons similar
to those discussed in Section III.

Due to space constraints, we omit a detailed description
and analysis of the aforementioned algorithm. Nevertheless,
its salient properties are summed up in the following theorem.

Theorem 17. Combined with the rate adaptation policy
Batch, FTG is universally stable and consumes at most
d · sups

f(6s)
f(s) · optB(t) energy up until time t. For f(s) = sα,

this is at most d · 6α · optB(t).

V. PERMANENT SESSIONS

At this point, we turn our attention to the permanent
sessions model, in which traffic is injected into fixed-path
connections. Recall that σi is the burst size for connection
i and ρi is the injection rate. Hence, if Hi(t, t

′) is the amount
of traffic injected into connection i during the time interval
[t, t′), then Hi(t, t

′) ≤ σi + ρi(t
′ − t). Let Se be the set of

connections passing through server e, let qi,e(t) be the amount
of connection i data queued at server e at time t, and let
qe(t) =

∑
i∈Se qi,e(t).

Consider a traditional setting in which each server e always
runs at the maximum speed Rmax. The most commonly
studied algorithm is Generalized Processor Sharing and its
packetized version Weighted Fair Queueing (WFQ) [8], [14].
At all times GPS2 splits its service equally among its back-
logged sessions in proportion to the connection rates ρi. That
is, at time t connection i is served at rate Rmaxφi(t) where
φi(t) := ρi

/(∑
j∈Se,qj,e(t)>0 ρj

)
. GPS is an idealized algo-

rithm that assumes that service can be divided evenly among
multiple sessions. For this reason Weighted Fair Queueing was
introduced, which serves data on a packet-by-packet basis.

2Strictly speaking, the version of GPS called Rate Proportional Processor
Sharing (RPPS).
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WFQ runs a virtual GPS scheduler in the background and
whenever it has to serve a packet it chooses the packet that
would be scheduled next according to the GPS scheduler,
assuming that no more packets arrive.

We now define rate-adaptive (RA) versions of GPS and
WFQ that we call RA-GPS and RA-WFQ respectively. At
all times t, server e operates at a speed r(qe(t)). We focus
on rate adaptation in the following generic form. If qe(t)
exceeds a certain threshold U , then e operates at the full rate
Rmax; otherwise, as long as the queue is non-empty, e operates
at a rate no lower than the minimum rate Rmin. At time t
any backlogged connection i is served at rate r(qe(t))φi(t).
RA-WFQ operates an RA-GPS scheduler in the background
and always runs the server at the same speed as RA-GPS.
Whenever it has to serve a packet it chooses the packet that
would be scheduled next according to the RA-GPS scheduler,
assuming that no more packets arrive.

Note that even though qi,e(t) may have different values
depending on whether we use RA-GPS or RA-WFQ, both the
queue size qe(t) and the server processing rate r(qe(t)) are
independent of whichever of the two algorithms is used.

The classic analysis of Parekh and Gallager [14] showed
that if r(q) = Rmax for all q then the end-to-end delay bound
for connection i under WFQ is given by,

σi + (Ki − 1)Li
ρi

+Ki
Lmax

Rmax
, (6)

where Ki is the number of hops on the path of connection i,
Li is the size of the maximum packet injected into connection
i, and Lmax = maxi Li. The aim of this section is derive
a similar bound for RA-WFQ. Our analysis in motivated by
a derivation of the bound (6) presented in the book [6]. In
particular, we show:

Theorem 18. The end-to-end delay for connection-i packets
under RA-WFQ is bounded by,

σi + (Ki − 1)Li
ρi

+Ki

(
Lmax

Rmin
+
Rmax

Rmin

U

ρi

)
.

Proof: Let us first concentrate on connection i at one
particular server e. For the nth packet arrival from connection
i at link e, let an be its arrival time at e, and let `n be its
packet size. By the definition of GPS, ρi is a lower bound on
the service rate to connection i. (Note that

∑
j∈Se ρi ≤ Rmax

by assumption.) Moreover, define a sequence

hn = max{an, hn−1}+
`n
ρi

.

Following [6], we say that a server is a (ρi, y) Guaranteed Rate
((ρi, y)-GR) server if the finishing time of the nth packet is
at most hn + y for all n. It is shown in [6] that under GPS
server e is a (ρi, 0)-GR server for connection i.

Let gRAn be the finishing time for the nth packet under RA-
GPS. In the following, we bound the difference between hn
and gRAn .

Lemma 19. gRAn − hn ≤ Rmax

Rmin

U
ρi

. Hence, under RA-GPS
server e is a

(
ρi,

Rmax

Rmin

U
ρi

)
-GR server for connection i.

Proof: It is not hard to see that if connection i is always
served at rate exactly ρi then the finishing time of the nth
packet will be exactly hn. We examine si(t), the cumulative
amount of service connection i receives by time t if it is always
offered server ρi. The slope of si(t) is either ρi or 0. (The latter
happens when the connection-i queue is empty.) We define
sRAi (t) to be the cumulative service connection i receives under
RA-GPS. We now claim that si(t) − sRAi (t) ≤ U for any t.
This is because whenever si(t) − sRAi (t) reaches U it must
be the case the value of qi,e(t) under RA-GPS is at least U .
This in turn implies that qe(t) ≥ U and so r(qe(t)) = Rmax.
Hence RA-GPS serves connection i at rate at least ρi and so
si(t)− sRAi (t) cannot increase.

The above argument implies that si(hn) − sRAi (hn) ≤
U . Since connection-i is always served at rate at least
Rminρi/Rmax, even under RA-GPS, this in turn implies that
gRAn ≤ hn + RmaxU

Rminρi
, as required.

We now bound the difference in finishing time for a packet
at server e under RA-GPS and RA-WFQ. The intuition here
is that processing a connection-i packet under RA-WFQ can
be delayed if a packet from a different connection just started
being processed. The worst-case delay happens when the other
packet is large in size and is processed at the lowest possible
rate.

Lemma 20. The finish time for a packet under RA-WFQ is
at most its finish time under RA-GPS plus Lmax

Rmin
.

Sketch of proof: Entirely analogous to the corresponding
result for WFQ in [6]. Omitted here for reasons of space.

Corollary 21. Under RA-WFQ, server e is a
(
ρi,

RmaxU
Rminρi

+
Lmax

Rmin

)
-GR server for connection i.

Subsequently, we focus on concatenating a sequence of GR
links, using a concatenation theorem from [6].

Theorem 22 (Concatenation Theorem [6]). The concatenation
of M (xj , yj)-GR servers, where 1 ≤ j ≤ M , results in
an (x, y)-GR server where x = min1≤j≤M xj and y =∑

1≤j≤M−1(yj + Li/xj).

Suppose connection i goes through Ki links. We know that
each link e along the path is (xe, ye)-GR, where xe and ye are
defined by Corollary 21. Applying Theorem 22 to Corollary 21
yields:

Lemma 23. For the Ki links along the path for connection i,
concatenating these Ki links results in an (xi, yi)-GR server,
where xi = ρi and yi = Ki

(
RmaxU
Rminρi

+ Lmax

Rmin

)
+ (Ki − 1)Liρi .

Next, we appeal to the following result from [6] to obtain
an end-to-end delay bound for RA-WFQ.

Lemma 24 (Delay Bound [6]). For a (σ, ρ) traffic source, a
(ρ, y)-GR server guarantees a delay of σ

ρ + y.

Combining Lemmas 23 and 24, we derive that the end-to-
end delay for connection i under RA-WFQ is upper bounded
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Fig. 1. The delay and energy performance of WFQ and RA-WFQ.

by
σi + (Ki − 1)Li

ρi
+Ki

(
Lmax

Rmin
+
Rmax

Rmin

U

ρi

)
,

as required.

A. Simulation

We now briefly describe simulation results that illustrate the
tradeoff between delay and energy usage. For our experiments,
we use a home-grown simulator written in C. The network
topology is a linear array of 10 identical servers. Moreover,
the network supports one long connection passing through all
10 servers, and 10 short connections each passing through one
of the servers. We normalize the maximum processing rate
Rmax of each server to 1, and consider the energy function
f(s) = s3. The injection rate of the long connection is `/4, for
some load factor ` that we vary between 0.16 and 0.8. The
injection rate of each short connection is 3`/4. Hence, the
load on each server is `. Observe that our study is explicitly
scale-invariant: time is specified in time slots, injection and
processing rates are specified as a fraction of Rmax, and power
consumption is specified as a function of the processing rate.

The left-hand plot of Figure 1 shows the average delay
of packets under WFQ and RA-WFQ, where the latter uses
the queue-based rate adaptation policy given by r(q) =
min{q/10, 1}. Similarly, the right-hand plot shows energy
usage. As expected, RA-WFQ exhibits significantly lower
energy consumption for light loads, at the expense of higher
packet delays.

VI. CONCLUSION

In this paper we studied energy-aware scheduling algo-
rithms with the objective of achieving bounded queue sizes
(which implies network stability) and bounded delays, while
simultaneously minimizing energy usage. We proposed several
policies, with varying degrees of complexity, to adjust the
server rates in response to incoming traffic. By combining
these policies with existing stable algorithms, such as Farthest-
to-Go and Weighted Fair Queueing, we were able to achieve
the aforementioned objective and also derive different tradeoffs
between queue sizes/delays and energy consumption.

Several interesting open questions remain. For example,
consider Longest-in-System (LIS), which gives priority to
packets that have been in the network for the longest time;
thus, it may be regarded as a “global” FIFO. Assuming that
servers run at Rmax all the time, LIS is known to be universally
stable [1] and has many desirable properties. Consequently,
inventing a rate-adaptive version of LIS with near-optimal
energy usage, while also preserving its salient characteristics,
would be a substantial achievement.

Finally, on a more general level, it would be very interesting
to know whether there is a single rate-adaptive approach that
can be applied to any stable scheduling algorithm to guarantee
bounded queue size and near-optimal energy consumption.
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